Перед вами — 4 логические задачи, которые ставят в тупик даже тех, кто уверен в своих способностях. Если не удастся решить ни одной — значит, пора "перезагрузить" мозги и пересмотреть подход к нестандартным задачам. А если справитесь — считайте, что утреннюю зарядку для ума вы уже сделали! Попробуете пройти этот интеллектуальный квест без подсказок?
Поставьте мозги на зарядку, если не решите даже 1 задачу из 4
У вас есть набор фитилей, каждый из которых сгорает за один час. Длинные и тонкие фитили горят неравномерно: один участок может гореть быстрее, чем другой. Разрезание фитиля пополам не гарантирует, что каждая половина сгорит за полчаса.
1. С помощью двух фитилей отмерьте 45 минут.
2. С помощью одного фитиля как можно точнее отмерьте 20 минут.
Соль этой задачи в том, что понимание математики позволяет исключить условие неравномерности горения и точно отмерить промежутки времени. Мне нравится, что в этой головоломке математика берет верх над физикой.
Ниже предложена еще одна головоломка о том, как преодолеть несовершенство физического мира.
Переливая из одного кувшина в другой только полпинты жидкости, невозможно добиться того, чтобы в каждом кувшине была половина воды и половина вина. Такое возможно только в случае, если удастся перелить все содержимое одного кувшина в другой.
Не пытайтесь решить эту головоломку, как и предыдущую, с помощью чисел, так как сразу же увязнете в дробях. Рассуждайте лучше следующим образом. После того как вы выливаете содержимое кувшина с высоким содержанием вина в кувшин с низким содержанием вина, в первом кувшине по-прежнему остается больше вина, чем во втором, ведь концентрация вина в первом кувшине не меняется. Тогда как во втором кувшине содержание вина будет в пределах значений исходного содержания вина в обоих кувшинах.
Аналогично после того, как вы выливаете содержимое кувшина с низким содержанием вина в кувшин с высоким содержанием вина, в первом кувшине по-прежнему будет более низкое содержание вина, чем во втором. Содержание вина в первом кувшине остается неизменным, тогда как во втором будет варьироваться в пределах значений исходного содержания вина в обоих кувшинах.
Изначально содержание вина в одном кувшине составляет 100 процентов, а в другом – 0. Поскольку в начале решения задачи существует разность в содержании вина в кувшинах, а при каждом переливании (либо из кувшина с низким содержанием вина в кувшин с его высоким содержанием или наоборот) сохраняется хотя бы малая часть этой разности, значит, два кувшина не могут быть наполнены водой и вином в соотношении 50: 50.
У вас есть набор фитилей, каждый из которых сгорает за один час. Длинные и тонкие фитили горят неравномерно: один участок может гореть быстрее, чем другой. Разрезание фитиля пополам не гарантирует, что каждая половина сгорит за полчаса.
1. С помощью двух фитилей отмерьте 45 минут.
2. С помощью одного фитиля как можно точнее отмерьте 20 минут.
Соль этой задачи в том, что понимание математики позволяет исключить условие неравномерности горения и точно отмерить промежутки времени. Мне нравится, что в этой головоломке математика берет верх над физикой.
Ниже предложена еще одна головоломка о том, как преодолеть несовершенство физического мира.
У вас есть набор фитилей, каждый из которых сгорает за один час. Длинные и тонкие фитили горят неравномерно: один участок может гореть быстрее, чем другой. Разрезание фитиля пополам не гарантирует, что каждая половина сгорит за полчаса.
1. С помощью двух фитилей отмерьте 45 минут.
2. С помощью одного фитиля как можно точнее отмерьте 20 минут.
Соль этой задачи в том, что понимание математики позволяет исключить условие неравномерности горения и точно отмерить промежутки времени. Мне нравится, что в этой головоломке математика берет верх над физикой.
Ниже предложена еще одна головоломка о том, как преодолеть несовершенство физического мира.
В случае подбрасывания обычной монеты вероятность выпадения орла или решки равна 50: 50. Допустим, ваша монета с дефектом, из-за чего вероятность выпадения орла или решки составляет не 50: 50, а какое-то другое соотношение. Можно ли сделать так, чтобы она вела себя как обычная монета? Необходимо найти такую комбинацию подбрасываний, которая обеспечит результат 50: 50.
Монеты – важнейший инструмент в мире головоломок; в следующей главе мы поговорим о них подробнее.
Рычажные весы были единственным инструментом для взвешивания предметов вплоть до XVIII столетия, когда были изобретены пружинные весы с одной чашей. Будучи распространенным измерительным прибором, рычажные весы часто были героями математических головоломок, начиная с эпохи Возрождения до эпохи Просвещения и позднее. Решите одну из них.
Эту задачу впервые сформулировал (и решил) Джон фон Нейман, гениальный математик венгерского происхождения, внесший значительный вклад в каждую область науки, в которой работал, а также открывший некоторые новые научные области.
Орел или решка неправильной монеты не выпадают с вероятностью 50: 50. Тем не менее, если подбросить такую монету дважды, вероятность того, что выпадет орел, а затем решка, равна вероятности того, что сначала выпадет решка, а затем орел. (Формально говоря, если вероятность выпадения орла равна a, а вероятность выпадения решки – b, то вероятность выпадения орла, а затем решки равна a × b; вероятность выпадения решки, а затем орла – b × a, что эквивалентно a × b.) Таким образом, чтобы имитировать поведение правильной монеты с помощью неправильной, нужно обозначить вероятности либо «орел, затем решка» (ОР), либо «решка, затем орел» (РО) и подбросить монету дважды. И вы получите следующие варианты: ОР, РО, ОО или РР. В двух последних случаях, когда монета выпадет дважды одной стороной, проигнорируйте результат и снова подбросьте ее два раза. Остановитесь, если выпадет ОР или РО, но продолжайте подбрасывать в случае выпадения ОО или РР. Вероятность выпадения ОР или РО равна 50: 50, что имитирует результат подбрасывания правильной монеты.
В случае подбрасывания обычной монеты вероятность выпадения орла или решки равна 50: 50. Допустим, ваша монета с дефектом, из-за чего вероятность выпадения орла или решки составляет не 50: 50, а какое-то другое соотношение. Можно ли сделать так, чтобы она вела себя как обычная монета? Необходимо найти такую комбинацию подбрасываний, которая обеспечит результат 50: 50.
Монеты – важнейший инструмент в мире головоломок; в следующей главе мы поговорим о них подробнее.
Рычажные весы были единственным инструментом для взвешивания предметов вплоть до XVIII столетия, когда были изобретены пружинные весы с одной чашей. Будучи распространенным измерительным прибором, рычажные весы часто были героями математических головоломок, начиная с эпохи Возрождения до эпохи Просвещения и позднее. Решите одну из них.
В случае подбрасывания обычной монеты вероятность выпадения орла или решки равна 50: 50. Допустим, ваша монета с дефектом, из-за чего вероятность выпадения орла или решки составляет не 50: 50, а какое-то другое соотношение. Можно ли сделать так, чтобы она вела себя как обычная монета? Необходимо найти такую комбинацию подбрасываний, которая обеспечит результат 50: 50.
Монеты – важнейший инструмент в мире головоломок; в следующей главе мы поговорим о них подробнее.
Рычажные весы были единственным инструментом для взвешивания предметов вплоть до XVIII столетия, когда были изобретены пружинные весы с одной чашей. Будучи распространенным измерительным прибором, рычажные весы часто были героями математических головоломок, начиная с эпохи Возрождения до эпохи Просвещения и позднее. Решите одну из них.

У вас есть рычажные весы и две гири весом 10 и 40 граммов. Разделите 1 килограмм муки на две части – 200 и 800 граммов – за три взвешивания.
Предположим, у нас есть набор килограммовых гирь, соответствующих первым шести членам последовательности удваивающихся чисел: 1, 2, 4, 8, 16, 32. Комбинируя эти шесть гирь, можно получить любой вес от 1 до 63 килограммов. Например:
3 = 2 + 1.
Другими словами, для того чтобы получить 3 килограмма, необходимо взять две гири весом 2 и 1 килограмм.
13 = 8 + 4 + 1;
27 = 16 + 8 + 2 + 1;
63 = 32 + 16 + 8 + 4 + 2 + 1.
В действительности шесть гирь образуют минимальный набор, позволяющий измерить любой вес в килограммах от 1 до 63.
Почему это так, можно понять, рассматривая выражение веса в двоичных числах. В двоичной системе счисления используются только цифры 1 и 0. Двоичные числа – это числа десятичной системы, записанные с помощью 1 и 0: 1, 10, 11, 100, 110 и т. д. Числа 1, 10, 100, 1000, 10 000 и 100 000 в двоичной системе счисления соответствуют десятичным числам 1, 2, 4, 8, 16 и 32. Таким образом, двоичные числа – это своего рода инструкции в отношении того, как выстраивать числа с помощью последовательности, в которой каждый очередной член в два раза больше предыдущего. Таким образом, в двоичной системе следующие числа записываются так:
3 – это 11
13 – 1101
27 – 11 011
63 – 111 111
Цифра 1 в крайнем правом столбце соответствует 1, цифра 1 в соседнем столбце – 2, цифра 1 в следующем столбце – 4 и т. д. Аналогичным образом цифра 0 в крайнем правом столбце означает отсутствие цифры 1, цифра 0 в соседнем столбце означает отсутствие цифры 2, цифра 0 в следующем столбце – отсутствие цифры 4 и т. д.
Итак, возьмем число 13, которое записывается в двоичной системе как 1101. Эта группа цифр справа налево означает: одна цифра 1, нет цифры 2, одна цифра 4 и одна цифра 8. Другими словами, 13 = 1 + 4 + 8 – как и было сказано.
Но давайте больше не будем отвлекаться на двоичные числа, какой бы интересной ни была эта тема. Вернемся к весам и гирям.
Поскольку наш набор гирь (1, 2, 4, 8, 16, 32) позволяет измерить любой вес в килограммах от 1 до 63, мы можем взвесить любое целое количество килограммов от 1 до 63, положив на одну из чаш весов соответствующую комбинацию гирь. А что, если использовать обе чаши?
Взвешивание 1: высыпьте 1 килограмм муки в две чаши весов так, чтобы в каждой чаше было по 500 граммов.
Взвешивание 2: пересыпьте одну из горок муки весом 500 граммов в какую-то емкость, а оставшуюся часть разделите на две чаши, по 250 граммов в каждой.
Взвешивание 3: одну из горок муки весом 250 граммов тоже пересыпьте в емкость. Из другой продолжайте отбирать муку до тех пор, пока остаток не уравновесит две гири суммарным весом 50 граммов (10 и 40 граммов). У вас получится горка муки весом 200 граммов. Мука в емкости будет, соответственно, весить 800 граммов.
У вас есть рычажные весы и две гири весом 10 и 40 граммов. Разделите 1 килограмм муки на две части – 200 и 800 граммов – за три взвешивания.
Предположим, у нас есть набор килограммовых гирь, соответствующих первым шести членам последовательности удваивающихся чисел: 1, 2, 4, 8, 16, 32. Комбинируя эти шесть гирь, можно получить любой вес от 1 до 63 килограммов. Например:
3 = 2 + 1.
Другими словами, для того чтобы получить 3 килограмма, необходимо взять две гири весом 2 и 1 килограмм.
13 = 8 + 4 + 1;
27 = 16 + 8 + 2 + 1;
63 = 32 + 16 + 8 + 4 + 2 + 1.
В действительности шесть гирь образуют минимальный набор, позволяющий измерить любой вес в килограммах от 1 до 63.
Почему это так, можно понять, рассматривая выражение веса в двоичных числах. В двоичной системе счисления используются только цифры 1 и 0. Двоичные числа – это числа десятичной системы, записанные с помощью 1 и 0: 1, 10, 11, 100, 110 и т. д. Числа 1, 10, 100, 1000, 10 000 и 100 000 в двоичной системе счисления соответствуют десятичным числам 1, 2, 4, 8, 16 и 32. Таким образом, двоичные числа – это своего рода инструкции в отношении того, как выстраивать числа с помощью последовательности, в которой каждый очередной член в два раза больше предыдущего. Таким образом, в двоичной системе следующие числа записываются так:
3 – это 11
13 – 1101
27 – 11 011
63 – 111 111
Цифра 1 в крайнем правом столбце соответствует 1, цифра 1 в соседнем столбце – 2, цифра 1 в следующем столбце – 4 и т. д. Аналогичным образом цифра 0 в крайнем правом столбце означает отсутствие цифры 1, цифра 0 в соседнем столбце означает отсутствие цифры 2, цифра 0 в следующем столбце – отсутствие цифры 4 и т. д.
Итак, возьмем число 13, которое записывается в двоичной системе как 1101. Эта группа цифр справа налево означает: одна цифра 1, нет цифры 2, одна цифра 4 и одна цифра 8. Другими словами, 13 = 1 + 4 + 8 – как и было сказано.
Но давайте больше не будем отвлекаться на двоичные числа, какой бы интересной ни была эта тема. Вернемся к весам и гирям.
Поскольку наш набор гирь (1, 2, 4, 8, 16, 32) позволяет измерить любой вес в килограммах от 1 до 63, мы можем взвесить любое целое количество килограммов от 1 до 63, положив на одну из чаш весов соответствующую комбинацию гирь. А что, если использовать обе чаши?
У вас есть рычажные весы и две гири весом 10 и 40 граммов. Разделите 1 килограмм муки на две части – 200 и 800 граммов – за три взвешивания.
Предположим, у нас есть набор килограммовых гирь, соответствующих первым шести членам последовательности удваивающихся чисел: 1, 2, 4, 8, 16, 32. Комбинируя эти шесть гирь, можно получить любой вес от 1 до 63 килограммов. Например:
3 = 2 + 1.
Другими словами, для того чтобы получить 3 килограмма, необходимо взять две гири весом 2 и 1 килограмм.
13 = 8 + 4 + 1;
27 = 16 + 8 + 2 + 1;
63 = 32 + 16 + 8 + 4 + 2 + 1.
В действительности шесть гирь образуют минимальный набор, позволяющий измерить любой вес в килограммах от 1 до 63.
Почему это так, можно понять, рассматривая выражение веса в двоичных числах. В двоичной системе счисления используются только цифры 1 и 0. Двоичные числа – это числа десятичной системы, записанные с помощью 1 и 0: 1, 10, 11, 100, 110 и т. д. Числа 1, 10, 100, 1000, 10 000 и 100 000 в двоичной системе счисления соответствуют десятичным числам 1, 2, 4, 8, 16 и 32. Таким образом, двоичные числа – это своего рода инструкции в отношении того, как выстраивать числа с помощью последовательности, в которой каждый очередной член в два раза больше предыдущего. Таким образом, в двоичной системе следующие числа записываются так:
3 – это 11
13 – 1101
27 – 11 011
63 – 111 111
Цифра 1 в крайнем правом столбце соответствует 1, цифра 1 в соседнем столбце – 2, цифра 1 в следующем столбце – 4 и т. д. Аналогичным образом цифра 0 в крайнем правом столбце означает отсутствие цифры 1, цифра 0 в соседнем столбце означает отсутствие цифры 2, цифра 0 в следующем столбце – отсутствие цифры 4 и т. д.
Итак, возьмем число 13, которое записывается в двоичной системе как 1101. Эта группа цифр справа налево означает: одна цифра 1, нет цифры 2, одна цифра 4 и одна цифра 8. Другими словами, 13 = 1 + 4 + 8 – как и было сказано.
Но давайте больше не будем отвлекаться на двоичные числа, какой бы интересной ни была эта тема. Вернемся к весам и гирям.
Поскольку наш набор гирь (1, 2, 4, 8, 16, 32) позволяет измерить любой вес в килограммах от 1 до 63, мы можем взвесить любое целое количество килограммов от 1 до 63, положив на одну из чаш весов соответствующую комбинацию гирь. А что, если использовать обе чаши?
ССЫЛКИ ПО ТЕМЕ: